

Tetrahedron Letters 41 (2000) 5547-5551

TETRAHEDRON LETTERS

A selective ring opening reaction of 4,6-*O*-benzylidene acetals in carbohydrates using trialkylsilane derivatives

Masahiro Sakagami* and Hiroshi Hamana

Research Laboratories, Shionogi & Co. Ltd., Fukushima-ku, Osaka 553-0002, Japan

Received 16 February 2000; revised 22 May 2000; accepted 26 May 2000

Abstract

Reductive ring opening reactions of 4,6-*O*-benzylidene-protected carbohydrates to the corresponding benzyl ethers using trialkylsilane derivatives were examined. When $Et_3SiH(or PS-DES^{TM})$ -TfOH was used, 6-*O*-benzyl ethers with 4-hydroxy unsubstituted were obtained, while, when $Et_3SiH(or PS-DES^{TM})$ -PhBCl₂ was used, 4-*O*-benzyl ethers with 6-hydroxy unsubstituted were obtained in quantitative yield with excellent selectivity. © 2000 Elsevier Science Ltd. All rights reserved.

Recently, the protein carbohydrate recognition process was revealed to be involved in various biological responses, and has become the target of much attention.¹ We focused on the interaction between sialyl Lewis X (SLe^x, Neu5Ac α 2-3Gal β 1-4(Fuc α 1-3)GlcNAc) and E-selectin which is expressed on the surface of endothelial cells during inflammation.² We have suggested that SLe^x-polysaccharide conjugates should be useful as homing devices for an active targeting drug delivery system (DDS) to inflammatory lesions.³ To our knowledge, this is the first experimental evidence of SLe^x being useful as a DDS homing device.

As part of our program to develop SLe^x-polysaccharide conjugates, we conducted the selective ring opening reaction of 4,6-O-benzylidene acetals of Fuc α 1-3GlcNAc (i) to the corresponding 6-O-benzyl ether derivative, which was a useful intermediate for the synthesis of 1-4 linked oligo-saccharide (ii) (Fig. 1).

Reductive ring opening of benzylidene acetals requires $NaBH_3CN-HCl^4$ or $Et_3SiH-TFA$.⁵ However, $NaBH_3CN$ is a hazardous chemical that precludes its use on a large scale, and the reaction of 1 using $Et_3SiH-TFA$ resulted in poor yield (40–50%) of the desired product. Thus, a selective method was needed to prepare 6-*O*-benzyl-4-hydroxy derivatives. Also, many 1–6-linked oligosaccharides exist in nature, and the development of an efficient method for synthesizing these compounds is important in the area of carbohydrate chemistry.⁶ Here we describe the selective ring opening reaction of 4,6-*O*-benzylidene acetal in carbohydrates using Et_3SiH as a reductive reagent.

^{*} Corresponding author. E-mail: masahiro.sakagami@shionogi.co.jp

Figure 1.

First, the reductive ring opening reaction was attempted using the 4,6-*O*-benzylidene acetal of **1** which is the important intermediate in the synthesis of SLe^x-derivative. When TfOH was used at -78° C as an acid,⁷ compound **1** was efficiently converted to the corresponding 6-*O*-benzyl-4-hydroxy derivative **2** in high yield with excellent selectivity (Scheme 1). However, when TfOH was used at 0°C, **2** decomposed to give fucose derivative **4**. On the other hand, using PhBCl₂ as an acid, the corresponding 4-*O*-benzyl-6-hydroxy derivative **3** was obtained in almost quantitative yield with excellent selectivity (Table 1, Entries 1 and 7). The five boron reagents displayed differences in regioselectivity (Table 1, Entries 3, 7, 8 and 9). Also, the use of activated molecular sieves was important in these reactions. When they were not used, for instance, the yield of **2** in the reaction of Entry 1 decreased to ca. 60%.⁸ The regioselectivity may be due to the relative acidities and steric factor of O-4.⁹

Scheme 1.

1	able	1

Entry	Acid	Temp.(°C)	Time (hr)	2	3	4	SM
1	T f OH	-78	1	87%	N.D.	N.D.	N.D.
2	TfOH	rt	1	5%	N.D.	74%	N.D.
3	$BF_3 \cdot OEt_2$	0	12	48%	<2% ^{c)}	7%	20%
4	SnCl₄	-78	3	N.D.	15%	N.D.	81%
5	AICI ₃	-78	3	N.D.	68%	N.D.	27%
6	BCl₃	-78	1	N.D.	75%	N.D.	N.D.
7	PhBCl₂	-78	1	N.D.	99%	N.D.	N.D.
8	Bu₂BOTf	-78	1	25%	61%	N.D.	N.D.
9	9-BBNOTf	-78	1	<3% ^{c)}	84%	N.D.	N.D.

a) Yields of isolated product. b) N.D. means that the product was not detected on the thin layer chromatography and ¹H NMR spectrum of the crude product. c) The yields were estimated from the ¹H NMR spectrum of the crude product.

Other sugars were explored, with results similar to the case of fucosyl GlcNAc derivatives **1**. Using TfOH or PhBCl₂ as an acid led to high yield of the corresponding 6-*O*-benzyl-4-hydroxy or 4-*O*-benzyl-6-hydroxy derivative with excellent selectivity (Table 2). There was no reaction when galactose compound **6** and **7** were subjected to Et₃SiH–TFA.⁵ By changing the acid from TFA to TfOH, the reaction took place smoothly to give the desired product in high yield with excellent selectivity (Table 2, Entries 2 and 3). Moreover, though BH₃–Bu₂BOTf was reported to be an efficient reagent for reductively cleaving 4,6-*O*-benzylidene-protected carbohydrates to the corresponding 4-*O*-benzyl derivatives,¹⁰ our system using PhBCl₂ was found to also be widely applicable. However, when EtCN was used as the solvent (Table 2, Entry 8), the reaction almost did not take place because PhBCl₂ was coordinated with the nitrile group of EtCN, and thus the Lewis acidity of PhBCl₂ was lowered (Scheme 2).¹¹

Scheme 2.

Table 2

Entry	Substrate	Acid	Solvent	6-OBn	4-OBn	SM
1	5	TfOH	CH ₂ Cl ₂	90%	N.D.	N.D.
2	6	TfOH	CH ₂ Cl ₂	98%	N.D.	N.D.
3	7	TfOH	CH ₂ Cl ₂	85%	N.D.	N.D.
4	8	TfOH	CH ₂ Cl ₂	87%	N.D.	N.D.
5	5	PhBCl₂	CH ₂ Cl ₂	N.D.	91%	N.D.
6	6	PhBCl₂	CH ₂ Cl ₂	N.D.	85%	N.D.
7	8	PhBCl₂	CH ₂ Cl ₂	N.D.	92%	N.D.
8	5	PhBCl₂	EtCN	N.D.	2%	95%

a) All yields were isolated yield. b) N.D. means that the product was not detected on the thin layer

chromatography and ¹H NMR spectrum of the crude product.

Recently, rapid progress has been made in solid-phase organic synthesis,¹² and in the area of combinatorial chemistry, the utility of the polymer-supported reagent is well-recognized because of the ease of the workup and separation of products and reagent. To expand application of solid phase organic synthesis, the ring opening reaction using PS-DESTM was examined (Scheme 3).¹³

As shown in Table 3, the reaction using PS-DESTM was equivalent to the case of Et_3SiH . On the other hand, using *i*Pr₃SiH, a bulky alkylsilane derivative, resulted in an extremely reduced conversion yield (Table 3, Entry 6).¹⁴ These results showed that the polymer-supported trialkyl-silane derivative was effective for this reduction, and the choice of silane reagent was also important.

$$1 \xrightarrow[Alkyl]{CH_2Cl_2 / MS4A} 2 + 3$$

$$Alkyl Silane (3 eq.)$$

$$Acid (3.4 eq.)$$

Scheme 3.

Table 3

		l.				
Entry	Silane	Acid	Time	2	3	SM
1	Et₃SiH	TfOH	1	87%	N.D.	N.D.
2	Et₃SiH	PhBCl₂	1	N.D.	99%	N.D.
3	PS-DES [™]	TfOH	1	94%	N.D.	N.D.
4	PS-DES [™]	PhBCl₂	1	N.D.	93%	N.D.
5	iPr₃SiH	TfOH	1	93%	N.D.	N.D.
6	iPr₃SiH	PhBCl₂	3	N.D.	15%	80%

1) All yields were isolated yield. 2) N.D. means that the product was not detected on the thin

layer chromatography and ¹H NMR spectrum of the crude product.

In summary, when a suitable Lewis acid is used in the presence of trialkylsilane derivative, 4,6-O-benzylidene-protected carbohydrates can be converted to the desired corresponding O-benzyl ethers in high yield with excellent selectivity. These methods should be useful for synthesizing various oligosaccharides.¹⁴

References

- (a) Ashwell, G.; Harford, J. Annu. Rev. Biochem. 1982, 51, 531–554. (b) Suzuki, Y. Virology 1992, 189, 121–131.
 (c) Imai, Y.; Lasky, L. A.; Rosen, S. D. Nature 1993, 361, 555–557. (d) Perillo, N. L.; Pace, K. E.; Seihamer, J. J.; Baum, L. G. Nature 1995, 378, 736–739.
- (a) Phillips, M. L.; Nudelman, E.; Gaeta, F. C. A.; Perez, M.; Singhal, A. K.; Hakomori, S.; Paulson, J. C. Science 1990, 250, 1130–1132. (b) Walz, G.; Aruffo, A.; Kolanus, W.; Bevilacqua, M.; Seed, B. Science 1990, 250, 1132– 1135. (c) Springer, T. A.; Lasky, L. A. Nature 1991, 349, 196–197. (d) Bevilacqua, M.; Pober, J. S.; Mendrick, D. L.; Cotran, R. S.; Gimbrone Jr., M. A. Proc. Natl. Acad. Sci. U.S.A. 1987, 84, 9238–9242. (e) Bevilacqua, M.; Stengelin, S.; Gimbrone Jr., M. A.; Seed, B. Science 1989, 243, 1160–1165. (f) Lowe, J. B.; Stoolman, L. M.; Nair, R. P.; Larsen, R. D.; Berhend, T. L.; Marks, R. M. Cell 1990, 63, 475–484.
- (a) Sakagami, M.; Horie, K.; Nakamoto, K.; Kawaguchi, K.; Hamana, H. *Bioorg. Med. Chem. Lett.* 1998, *8*, 2783–2786.
 (b) Horie, K.; Sakagami, M.; Kuramochi, K.; Hanasaki, K.; Hamana, H. *Pharm. Res.* 1999, *16*, 314–320.
- 4. Garegg, J.; Hultberg, H.; Wallin, S. Carbohydr. Res. 1982, 108, 97-101.
- 5. DeNinno, M. P.; Etienne, J. B.; Duplantier, K. C. Tetrahedron Lett. 1995, 36, 669-672.
- (a) Danishefsky, S. J.; Bilodeau, M. T. Angew. Chem. Int. Ed. 1996, 35, 1380–1419.
 (b) Holst, O. Angew. Chem., Int. Ed. 1995, 34, 2000–2002.
- 7. Sanders, W. J.; Manning, D. D.; Koeller, K. M.; Kiessling, L. L. Tetrahedron 1997, 53, 16391-16422.
- 8. Molecular sieves were dried at 140°C over 4 h with vacuation (ca. 0.1 mmHg).
- 9. Guindon, Y.; Girard, Y.; Berthiaume, S.; Gorys, V.; Lemieux, R.; Yoakim, C. Can. J. Chem. 1990, 68, 897-902.
- (a) Jiang, L.; Chan, T.-K. *Tetrahedron Lett.* 1998, *39*, 355–358. (b) Okawa, M.; Liu, W. C.; Nakai, Y.; Koshida, S.; Fukase, K.; Kusumoto, S. *Synlett* 1996, 1179–1180.
- 11. We reported that allyltrimethylsilane reacted with various nitriles in the presence of boron trichloride. Hamana, H.; Sugasawa, T. *Chem. Lett.* **1985**, 921–924.

- (a) Thompson, L. A.; Ellman, J. A. Chem. Rev. 1996, 96, 555–600. (b) Hermkens, P. H. H.; Ottenheijim, H. C. J.; Rees, D. C. Tetrahedron 1997, 53, 5643–5678.
- PS-DESTM (0.81 mmol/g) was purchased from Argonaut Technologies Inc. Hu, Y.; Porco, J. A.; Labadie, J. W.; Gooding, O. W.; Trost, B. M. J. Org. Chem. 1998, 63, 4518–4521.
- 14. The general procedure is as follows: Molecular sieves 4A (1.5 g) were placed in a 20-mL flask and dried at 140 °C over 4 h with vacuation (ca. 0.1 mmHg). After cooling to room temperature, 1 (300 mg, 0.425 mmol), and CH₂Cl₂ (5 ml) were added to the flask. After stirring for 1 h at room temperature, the mixture was cooled to -78°C, and then to the stirred solution, Et₃SiH (220 µl, 1.38 mmol) and TfOH (94 µl, 1.22 mmol) were added successively. After being stirred for 1 h at -78°C, Et₃N (1 ml) and MeOH (1 ml) were added successively, and the mixture was diluted with CHCl₃ and washed with aqueous NaHCO₃, dried over MgSO₄, filtered and concentrated. The crude product was purified by silica gel column (25 g, CHCl₃:MeOH = 100:1) giving 2 (262 mg, 87%).